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1 Introduction

DNA is the information storage medium of nature. It is highly dense (4.6×108GB/mm3)[12] and extremely stable
(1 cut/century/105nt)[10] and, thus, has the potential to solve mankinds increasingly pressing (cold) data storage
needs efficiently and sustainably [5]. The idea of using DNA as a storage medium has been discussed as early as the
mid-1960s [24], however, only in the early 2010s has the storage of substantial amounts of data in DNA molecules
been demonstrated [9, 17]. These advancements, leveraging next-generation technologies for both DNA synthesis
and sequencing, propelled DNA data storage into the spotlight, showcasing its high capacity, stability, and potential
to revolutionize data storage paradigms. The costs have decreased from 0.1$ per nucleotide in the 1980s to less
than 1 ·10−4$ per nucleotide in today (1 ·108$ per TB at 1 bit / bp) [25]. The time required to sequence a TB has
decreased from several years to a few days [18]. Despite these advances of about 3 orders of magnitude in both
costs and time, the technology is still far from being a valid business case. In contrast, tape storage, a widely used
conventional method, costs about 16$ per TB, with prices decreasing by 10% annually [5, 14]. Thus, to become a
viable alternative to conventional storage technologies, DNA data storage must decrease costs by several orders of
magnitude, in particular the synthesis as it is by far the most costly step in the data storage workflow.

A potential alternative to DNA synthesis on the nucleotide level is the assembly of DNA shortmers, which
involves the precise joining of shorter oligonucleotide sequences to create longer, contiguous DNA strands. These
strands often reach gene-length scales (1-15kbp), which is why the construction process is often referred to as "gene
synthesis". This synthesis of gene-length DNA is crucial for constructing functional genetic elements for research
and biotechnological applications, and, thus, techniques such as Gibson assembly or Golden Gate assembly have
been established. The mechanistic details of these methods have been reviewed extensively elsewhere [4, 6, 11].

Assembly-based DNA data storage storage offers the potential to reduce the costs of DNA synthesis dramatic-
ally, given that a finite set of DNA fragments can be produced, amplified, and assembled in a cost-effective manner.
It further does not involve any toxic chemicals and can, thus, greatly reduce the environmental footprint compared
to chemical de-novo synthesis. In this paper, we will systematically analyse the suitablity of DNA assembly for
DNA data storage purposes. More precisely, we will explore different algorithms and coding schemes for this un-
dertaking and evaluate their performance in terms of (i) thermodynamic properties, (ii) time complexity, (iii) cost,
and (iv) environmental impact. Particular attention will be paid to the parallelisation / scalability of the encoding
schemes as these affect time and cost.

2 Assembly-based DNA Encoding Schemes

Essentially, all assembly methods rely on the hybridization of complementary single stand (ss) DNA stretches and
the subsequent ligation of the backbone. Thus, in this section, we will abstract from the biochemical details and fo-
cus on the algorithmic aspects of DNA assembly for DNA data storage. For this purpose, let us define an assembly-
based DNA encoding scheme as a pair (A ,ψ), where A denotes a library of oligonucleotides, and ψ an encoding

1



function that maps a bit sequence to a sequence of elements of A . More formally, a library is a set of short oligonuc-
leotides (shortmers) A ⊆Ωn := {A,C,G,T}n 1, which can be assembled in an arbitrary order to encode information
using only elements of A . For the half overlapping ligation scheme (HOLS) depicted in Figure 2, this means that
every pair a,b of elements of A can be ligated by an oligo that is the reverse complement of the second half of a and
the first half of b. A is a library for the HOLS :⇐⇒ ∀a,b ∈A : (bn/2−1,bn/2−2, . . . ,b1,an,an−1, . . . ,an/2+1) ∈A .
ψ : {0,1}m 7→A n is a bijection, ensuring that any bit sequence can be mapped to a unique sequence of oligos and
vice versa.

2.1 Library size

Most data storage schemes rely on the encoding of information in the sequence of nucleotides, since they are
based on synthesis on the nucleotide level. In theory, this is also possible based on the assembly of oligos from
the complete library of n-mers An = {A,C,G,T}n. Since such a library is exhaustive, every possible nucleotide
sequence can be obtained by assembly and, thus, the theoretical maximum of 2 bits per nucleotide can be reached.
However, such a library must contain 4n different oligos, which becomes infeasible for even moderate oligo lengths.
Equation 1 states a simple relationship between the size a library |A | and the upper bound of the information density
per nucleotide - obtained only when all oligos encode for information.

d =
log2(|A |)

n
(1)

The nominator is simply the Shannon Entropy of a uniformly distributed random variable on the library A ,
while the denominator is the length of the oligos n. Due to the logarithmic relationship, it is possible to reduce
the number of oligos in the library (compared with the complete library) by several order of magnitude while still
achieving a reasonable information density. With e.g. 256 oligos of length 30, a density of 0.27 bits per nucleotide
can be achieved, which equals a reduction by a factor of 7.5 (less than 1 order of magnitude) whereas the reduction
in the number of oligos is 15 orders of magnitude (4.5 ·1015).
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Figure 1: An illustration of the upper bound of the information density depending on the library size on both a
linear and a log scale. The three designated points correspond to libraries of size 256 of oligos of length 8, 10, and
12, respectively.

In most DNA data storage schemes, the smallest unit of information is a nucleotide. The use of non-complete
libraries, however, requires alternative encoding strategies.

We propose a family of encoding schemes where the smallest unit of information is a motif. This is similar
to a codon in genetics, where a tripple of nucleotides encodes for one protein. Consider a library, in which every

1implicit assumption of same length nucleotides
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oligo can be represented as a concatenation of two motifs - a left and a right one.2 There are, thus, two equivalent
ways to represent the elements of an alphabet: (i) by their nucleotide sequence and (ii) by their symbol tuple
∀a ∈ A : a ∼ (si,s j) : si ∈ Sl,s j ∈ Sr ∈ S, where Sl and Sr are the set of left and right motifs, respectively. A
codeword is assembled by a chain of "half overlapping oligos" as illustrated in Figure 2.

Figure 2: An illustration of a simple ligation scheme of 20mers, where every oligo consists of a left and a right
motif. A codeword is assembled by a chain of such two motif oligos, where the first section consists of meta
information about the data block and the final section contains error correction information.

For such a library to be useful for data encoding, it must be generative - meaning that an arbitrary sequence of
oligos can be obtained by binding oligos from the library. This can be achieved by a simple construction: (i) define
arbitrary sets of left and right motifs, L and R, of length n respectively, (ii) unite these sets with their respective sets
of reverse complements Lc and Rc, and (iii) concatenate the elements of the cartesian product of these sets. This
simple construction is described in the supplementary material (6.1).

There are many possible ways to define encoding functions for such a library, however, the simplest way is to
index the library i = 1, . . . ,2n and to map a bit sequence to the oligo with the index number given by the decimal
representation of the bit sequence. We will use this encoding scheme based on a library of 28 = 256 oligos.

ψ : {0,1}m1 7→A m2 : ψ(b0, . . . ,bm1) = o
∑

m1
i bi2i (2)

2.2 Time complexity of the assembly process

Such an encoding scheme is optimal from the perspective of information density for libraries of a given size, since
all oligo encode information. However, data density is not the only relevant factor for the performance of a DNA
data storage system. The time complexity of the assembly process is another crucial factor. For the hybridisation of
a set of oligos to be unambiguous, the oligos in any reaction chamber must contain every motif not more than once.
There are different pooling strategies to achieve this. The simplest one is to ligate the oligos in a serial manner,
ligating only as many oligos per pool as are possible without motif-repetition. However, this would require the

If we denote the time required for a single hybridisation and ligation step as t, we can express the required
number of pooling steps for a given data package as a function of t. Since the sequence of oligos is stochastic,
the expected value of the number of oligos per pool is XXX and, thus, the number of bits per pool is YYY. The
distribution of the number of oligos per pool as well as the expected value is derived in the supplementary material
(6.2).

2We could consider oligos that consist of more than two motifs. However, for a given library size, this does not make any sense.
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A pooling strategy that reduces the time complexity of the assembly process is the hierarchical pooling. On the
first level, oligos are ligated in pools of varying size such that no motif repetition is possible. On the second level,
the oligos from the first level are ligated in pools of the same size. Again, the number of double stranded oligo in
each pool is limited by that fact that two "sticky ends" must not have the same motif in order to avoid unambiguous
binding. The time complexity of this pooling strategy is ZZZ, where is the number of motifs in the right and left
motif set, respectively???. The exact number of pooling steps and the expected value of the number of oligos per
pool is derived in the supplementary material (??).

There are, however, possible approaches to increase the bits per time unit by trading-off data density. One such
possibility is to introduce positional oligos, which sole purpose is the ensure the correct position of neighboring
oligos in the oligo. Obviously, these oligos will not encode any information and, thus, the upper bound for a given
library size cannot be obtained. In other words, there is a trade-off between time units and data density. The ligation
scheme illustrated in Figure 3 reduces the density by 1/3, but enables that entire codewords (with a bitsize of ZZZ)
can be assembled in only two steps. The bitrate per time unit is, thus, XXX. Further, the assembly strategy is
independent of the data encoded, which reduces the complexity of the engineering task.

Figure 3: Schematic representation of an assembly strategy built on positional oligos and message oligos. The
message oligos encode the actual information, while the positional oligos ensure the correct position of the message
oligos.

The advantage, however, is that the parallel pooling also enables combinatorial (or binomial) encoding - an
approach that can increase the data density by encoding data not in the sequence of nucleotides / oligos but in
mixtures of such entities [27]. If at a certain position there are n possible oligos, then normal encoding can encode
log2(n) bits at that position, e.g. 8 bits for libraries with n = 256 oligos. If, however, our information is encoded
by a selection of k out of n elements at that position, then that position can encode log2(

(n
k

)
) bits of data, where(n

k

)
denotes the binomical coefficient. This relationship is depicted in the left part of Figure 12 for k = 5 in the

supplementary material (6.4).
Binomial encoding can bring significant improvements in data density, however, it only makes sense, if different

variants of an oligo can be assembled "at no additional cost" in terms of time. More specifically, this would mean,
that different variants of a code word could be assembled in parallel and would not require more time or more
reaction pools than creating a single code word. Such a assembly / encoding strategy in depicted in Figure 13. The
number of bits that can effictively be encoded is, thus, ⌊log2(

((m−1)2

k

)
)⌋, where m is the number of (left and right)

motifs in the library. Its derivation and additional results can be found in the supplementary material (6.4).
An altogether different assembly strategy is to completely decouple the positional and message oligos (drawing

them from different sets). This allows to have an arbitrary number of message oligos but requires the use of
Polymerase to fill double stranded DNA..... This approach was explored by Catalog, a company that has developed
end-to-end DNA data storage solutions.

2.3 Thermodynamic optimization of oligo sequences

Until now, we abstracted from the biochemical details of DNA assembly and represented oligos as strings of
nucleotides and only considered the complementarity of A, T and C, G. For algorithmic purposes, designing good
assembly and pooling schemes, this level of detail is sufficient. For the purpose of identifying optimal sequences
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Figure 4: Analysis of the encoding bitrate as a function of n and k.

Figure 5: Schematic representation of an assembly strategy built on disjoint sets of positional and message oligos
with different lengths.

that exhibit good binding behaviour, we need to consider the thermodynamic properties of DNA in greater detail.
To achieve a highly controlled DNA assembly under standardised conditions, the oligos of a library need to exhibit
similar thermodynamic behaviour. The characteristics of hybridisation between oligos are not only determined by
the GC content, but also by neighborhood- and stacking effects [1 ???]. Hence, various computational models have
been developed to predict melting temepratures of oligos, with nearest-neighbor thermodynamic model (NNM)
being one of the most widely used [2 ???]. For this purpose, let us formulate the following hypothesis: For any
given oligo length n and any library size m, it is possible to identify a generative library that exhibits (i) a clear
separation in terms of free energy between intended bindings and unintended binding and (ii) avoids homopolymers
and CG imbalance. Criteria (i) is essential to ensure that the oligos can be assembled unambiguously. Criteria (ii)
is crucial for the effectiveness of the sequencing process, as homopolymers and imbalanced CG-content can cause
higher error rates in sequencing techniques [26]. This problem can be restated as an optimization problem:

max
A⊆Ωn

∣∣∣∣ max
x∈I(A)

G(x)− min
y∈U(A)

G(y)
∣∣∣∣ (3)

subject to the following constraints: (i) A is a library, (ii) the elements of A exhibit balanced CG content, and
(iii) the elements of A do not contain homopolymers. G(x) denotes the Gibbs free energy of the conformation
x and I(A) and U(A) are the sets of intended and unintended conformations of pairs of oligos, respectively. To
validate this hypothesis in an in silico process, we will attempt to generate a valid library with these characteristics
in the following iterative process described in pseudocode:

5



Algorithm 1: for library generation

1 while crit < limit do
2 L← /0;
3 R← /0;
4 while |L|<

√
size of library and |R|<

√
size of library do

5 Randomly select oligos l and r with n/2 nucleotides;
6 if l, lc, r, and rc exhibit ∼ 50% CG content and differ in at least n

4 nucleotides from all
polynucleotides in L and R then

7 L← L∪{l, lc};
8 R← R∪{r,rc};
9 end

10 end
11 Generate the library A (L∗,R∗);
12 Calculate the Gibbs free energy of binding for all possible pairings of oligos in A (L∗,R∗);
13 crit = |min{∆G(i, j) : i, j ∈A (L∗,R∗) intended}|− |max{∆G(i, j) : i, j ∈A (L∗,R∗) unintended}|;
14 end

As the thermodynamic model for DNA, we used the nearest-neighbour model, an improved version of the
SantaLucia model [21]. As the name suggests, the model predicts the Gibbs free energy of bound nucleotides by
summing up the energies of bindings in relation to the three nearest nucleotides (nearest neighbors) of a given DNA
strand. It was calibrated by a large melting curve array experiment and can find the most likely secondary structure
of the DNA strand given.

Figure 6 illustrates the schematic results of this in silico experiment consisting of two histograms where the
Gibbs free energy of binding is plotted for all possible pairings of oligos in the library. The blue distribution
represents the intended bindings (GI), while the orange distribution represents the unintended bindings (GU ). More
details can be found in (6.5).

2.4 Oligo length optimization

This experiment was repeated (25 libraries) for different oligo lengths with a constant library size in order to assess
the impact of oligo length (and, thus, the size of the sequences space) on the possibility to obtain good libraries.
As the oligos become longer, the number of hybridisations for intended bindings increases. At a length of 36, 38
and 40 base pair oligos the criterium of a positive gap is met, providing initial evidence that the oligo needs to be
longer thanxs originally anticipated.
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Figure 6: (a) Illustration of the results of the in silico experiment described in Section 2.3. Every bar represents
how many pairs have a certain Gibbs free energy of binding, where blue represents the intended bindings and orange
the unintended bindings. At the given oligo length of 36, there is a clear separation between the two distributions.
(b) Boxplots of the gap sizes between ∆GI and ∆GU for varying oligo lengths. As the oligo length increases, the
gap finally exceeds 0 at lengths of 36.

3 Experimental Validation

Despite the high accuracy of state-of-the-art computational models, experimental validation remains the gold stand-
ard for determining the thermal characteristics of oligos in different ionic conditions as well as their ligation beha-
viour. In order to validate the libraries experimentally, we ran two different experiments: (i) melting temperature
(Tm) measurements using a qPCR machine and (ii) ligation experiments using agarose gel electrophoresis and
a fragment analyser for evaluation. Furthermore, we implemented a digital twin of the pipeline to validate the
end-to-end process in an in silico environment.

3.1 Melting curve experiments

To validate the predicted melting behavior (separation of intended and unintended bindings) of our designed oligo
library and to detect potential problems that could complicate subsequent DNA assembly reactions, we performed
melting temperature (Tm) measurements on a qPCR machine using oligos with complementary motives and an
intercalating, fluorescent dye for detection. We assesses the melting temperatures of each left- and right- comple-
mentary pairs and compare the results to predicted values of IDT’s OligoAnalyzer™ Tool.

Figure 7 depicts the melting curves of all 16 RCPs. Each melting curves represents the melting behavior of two
different oligos with reverse complementary motives of length 10 nt. Whereas L-RCP-7 displays a “classical” trend
of a melting curve with a peak at 35°C, other curves like R-RCP-6 show a plateau between 25-50°C where no clear
melting peak can be obtained. This can be caused by many factors like secondary structures, influence of flanking,
non-hybridizing motives or experimental shortcoming. Preliminary results indicate that Tm-predictions are not
always confirmed by experimental results. Experimental replication and different designs will further advance our
understanding the melting behavior of our oligo library. Material and methods for this experiment can be found in
the supplementary material (??).

Table 1 compares the experimentally determined Tms with predicted Tms by IDT’s OligoAnalyzer™ Tool
with the given paramteres. For some melting curves, the Light Cycler 480® software was not able to call Tms,
as indicated by “-“. Notably, the majority of measured Tms deviate away from the predicted Tms more than one
standard deviation. This can be caused by an imperfect experimental setup or by limitations of the predictive
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Figure 7

models. Generally speaking, repition of the described ecperiments would improve the validity of the results and
different experimental design could further illumate properties of the given library. For example, one RCP could be
fixed and tested with many different oligo combinations to assess the effect of the flanking, non-hybridising 10-nt
sequences. It must be noted that the hybridisation of a 10 base pair stretch results is not optimal for detection, as a
usual qPCR measurement detects dsDNA of much greater length (hundreds of base pairs), leading to higher signal
intesities.

RCP Measured Predicted ∆ measured-predicted
µ(Tm) (◦C) σ (Tm) (◦C) Tm (◦C) (◦C)

L-RCP-1 35.77 2.32 38.1 -2.33
L-RCP-2 50.44 4.24 38.5 11.94
L-RCP-3 - - 38.1 -
L-RCP-4 51.265 4.82 38.7 12.565
L-RCP-5 50.62 1.15 39.2 11.42
L-RCP-6 43.975 0.02 39.3 4.675
L-RCP-7 34.965 0.16 38.6 -3.635
L-RCP-8 32.985 4.29 38.1 -5.115
R-RCP-1 33.63 1.64 38.7 -5.07
R-RCP-2 41.995 1.21 38.7 3.295
R-RCP-3 47.595 0.76 38.8 8.795
R-RCP-4 28.76 - 38.1 -9.34
R-RCP-5 48.245 1.21 39.2 9.045
R-RCP-6 - - 37.8 -
R-RCP-7 35.175 0.09 38.8 -3.625
R-RCP-8 35.25 3.15 39.3 -4.05

Table 1: Comparison of measured and predicted melting temperatures (Tm) for various RCPs.
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3.2 Ligation Experiments

In the second experiment, we binarized the first verse of Queen’s "Bohemian Rhapsody" (XXX kB) and attempted
to ligate a set of oligos from a 256-oligonucleotide library. Based on our encoding scheme, this resulted in 9,600
base pairs DNA sequence through 282 pooling steps, using a total of 960 oligonucleotides. A python function not
only implemented the described encoding scheme but also generated a detailed pipetting scheme for each reaction.

The ligation products were then analysed by means of agarose gel electrophoresis (see Figure ) and a fragment
analyser (see Figure ). Details of the experiment can be found in the supplementary material (6.6).

3.3 Digital twin for DNA data storage

To assess the performance of the encoding scheme in an application scenario, we created a digital twin of the
end-to-end DNA data storage process based on our library discussed in chapter 2. This software programm allows
to (i) binarize files and add error correction, (ii) encode the information in DNA oligonucleotides, simulate the
process of (iii) synthesising, (iv) storing, and (v) sequencing the DNA. Further, it allows to (vi) correct errors that
were generated in steps (iii-v), (vii) decode the data back into binary data, and finally (vii) restore the original files.
Similar simulation pipelines have been developed in the past [2, 28, 7, 16], however in a manner that did not enable
the use of our library and encoding schemes. Our comprehensive digital twin - depicted in Figure 9 - allows the user
to set multiple parameters, such as the type of encoding library, error correction algorithms, storage characteristics,
sequencing technology etc. In order to be easily extendible, the digital twin was written in completely modular
way using the Python language and can be found under (https://github.com/EkoRefugium/mi_dna_disc).

Binarization The very first step of the pipeline is to take given input files, compress them and convert them into a
binary string. Subsequently the data is split up into codewords consisting of (i) meta information and the beginning,
(ii) the encoded data, and (iii) the error correction at the end. The amount of redundancy can be chosen by the user.
Common error correction methods like Reed-Solomon and fountain codes were implemented and their parameters
can be finetuned by the user.

Encoding Once the binary representation of the codewords for a specific encoding scheme is established, they
are encoded into oligos. The user can specify (i) a library, (ii) an encoding scheme (simply, binomial, ...) and (iii)
the pooling strategy. The order of oligos as well as the pooling sequence are then saved and passed on to the next
step of the pipeline.

Assembly In the assembly step, the oligonucleotides for all the codewords are mixed in the order specified by
the pooling algorithm. Our pooling method has two different modes, one is a theoretical mode that returns one of
each code word in the perfectly hybridized form while the default mode attempts to simulate random hybridisation
in a reaction chamber. The result of this simulation includes oligos of different lengths and potentially incorrectly
hybridised oligos.

Storage During this step, the long-term storage of the oligonucleotides is simulated. The user can choose the
storage period (in year) as well as the conditions under which the oligos are stored (Permafrost, room temperature,
ideal capsulated conditions, etc.) determining the rate of strand breaks and, thus, the half-life of the data [10, 1].

Sequencing In this step, we simulate the process of reading the data by sequencing. Currently, two different
sequencing technologies are implemented in the digital twin: (i) Illumina sequencing, and (ii) Oxford Nanopore
sequencing. Illumina errors are not random but are strand specific and the error rates are higher at the end of a read.
Substitution error rates are about 0.0015 - 0.0004 errors per base. Insertions and deletions are significantly less
likely, they are on the order of 10^-6. Nanopore sequencing errors are characterized by a higher error rate com-
pared to Illumina sequencing, with a mix of substitution, insertion, and deletion errors. Errors are more uniformly
distributed across the read length compared to Illumina sequencing.
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Correction After sequencing, the obtained sequences are filtered and aligned to match the expected length and
structure. To accurately map the sequenced oligonucleotides to the elements of the reference library, we employ a
variant of the Levenshtein distance, a metric for measuring the difference between two sequences. The Levenshtein
distance quantifies the minimum number of single-character edits (insertions, deletions, or substitutions) required
to transform one sequence into another. By calculating the Levenshtein distance between each sequenced oligo and
every oligo in the reference library, we can identify the closest matches. This approach is particularly effective in
handling sequencing errors, as it allows for a robust comparison that accounts for minor discrepancies. Once the
closest matches are identified, the sequenced oligos are mapped to their corresponding library elements, facilitating
subsequent error correction and data reconstruction steps.

Decoding The decoding process involves interpreting the sequenced oligonucleotides to reconstruct the original
data. The sequences are then split according to the encoding scheme used, isolating the information-carrying
segments of each codeword. For binomial encoding, this amounts to identifying all codewords belonging to one
data block and inferring the selection of motifs at each position.

Restoration of original files In the final step, the binary error correction algorithms are applied, the data is
decompressed, and the binary string is converted back into the original file format.

Figure 9: Schematic representation the digital twin for DNA data storage.
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4 Discussion

5 Conclusion

Assembly-based DNA encoding schemes are a promising approach for DNA data storage.
There are severall sources for cost reduction for both synthesis and sequencing.
The raw material for such encoding schemes could potentially be produced in in vivo bioreactors, which have

the potential to dramatically reduce the costs.
Data encoding in sequences of shorter oligos, can be sequenced at much higher error levels than in information

encoded on the nucleotide granularity. This offers potentially price and time advantages for the sequencing process.
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6 Supplementary Material

6.1 On the construction of complete libraries for half-overlapping ligation schemes

The following lemma offers a simple approach to constructing complete libraries from left and right motif sets. Let
us start with the following definitions:

Lemma 6.1. Let L,R ⊆ An/2 denote the set of left and right motifs, respectively. Further, let the function c
concatenate the left and right halfs of an oligo of length n, c : L×R 7→An : c(l,r) = (l1, . . . , lnl ,r1, . . . ,rnr). Then,
the set

A (L,R) := c((L∪Lc)⊗ (R∪Rc)) (4)

is a complete library, where ⊗ denotes the cartesian product of two sets.

Proof. The show the completeness of the library, we need to argue that for every pair of oligos o and p in A (L,R),
there exists an oligo l in A (L,R) that can hybridise to the right motif of o and the left motif of p, without loss of
generality. Thus, we need to show that for every motif or in R∪Rc and pl in L∪Lc, the reverse complements oc

l
and pc

r are also in their respective sets. This is the case, since the reverse complementarity operator is involutory
and, thus, the reverse complement of the reverse complement of a motif is the motif itself. Thus, l in L∪Lc and
R∪Rc are closed under the reverse complementarity operator and since every combination of left and right halfs is
in the cartesian product of these sets, the library is complete.

Note, that if L has nL pairs and R has nR pairs, the sets consist of 2nL and 2nR oligos, respectively. The only
exeption to this rule are symmetric motifs where the reverse complement of the motif is the motif itself. In this
situation the oligo pair consists of a single element. The cartesian product of L and R (every combination of left
and right halfs), consists of 4nLnR elements. For example, eight symbols on the left and right, (nL = nR = 8), will
lead to a library with a cardinality of 256. Note, that it is easiest to find simple encoding functions if |L|= |R|= 2k

for some k because this allows to directly base it on the binary representation of a number, see 2. Also, among
all encoding libraries with a given number of symbols N = |L|+|R| the library with the greatest density is the one
where |L|= |R|= N

2 .

6.2 Calculation of the expected number of pooling steps in a serial ligation scheme

Let Li denote the random variable that represents the ith symbol of the left side of Ri as the ith symbol on the
right side of an oligo. A complete codeword is made up of a sequence of such random variables. Consider e.g.,
codewords of length 256. Then the codeword consists of a sequence (L1,R1,L2,R2, . . . ,L32,R32). We can assume,
that hese random variables are independent and identically distributed and follow a uniform distribution on the
respective sets. P[Li = S] = 1/|L| ∀S ∈ L and the same holds true for Ri. Note, that the ligation oligos are
determined by the message oligos and are, thus, no random variables in this context.

We can now formulate the conditions for every random variable Li and Ri such that L1, . . . ,Li and R1, . . . ,Ri

represent a poolable set of oligos. Lets begin with the case, where M = L, were all elements are used both as
message and ligation oligos.

• L1 ∈ L
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• R1 ∈ R

• L2 ∈ L\{L1,L
′
1}

• R2 ∈ R\{R1,R
′
1}

• L3 ∈ L\{L1,L
′
1,L2,L

′
2}

• R3 ∈ R\{R1,R
′
1,R2,R

′
2}

• . . .

The probability that the first i oligos are poolable is, thus, given by

P[((L1,R1), . . . ,(Li,Ri)) are poolable] =
i−1

∏
j=1

(1− 2 j
|L|

)(1− 2 j
|R|

) ∀i = 1, . . . ,min(|L|, |R|) (5)

If X denotes the random variable that represents the length of the longest poolable set of oligos, then

X = i ⇐⇒ ((L1,R1), . . . ,(Li,Ri)) are poolable∧ (L1,R1, . . . ,Li+1,Ri+1) are not poolable. (6)

P[X = i] =
i

∏
j=0

(1− 2 j
|L|

)(1− 2 j
|R|

)(
2(i+1)
|L|

+
2(i+1)
|R|

− 2(i+1)
|L|

2(i+1)
|R|

) ∀i = 1, . . . ,min(|L|, |R|) (7)

For the case, where |L|= |R| this simplifies to

P[X = i] =
i

∏
j=1

(1− 2( j−1)
|L|

)2(
4i
|L|
− 4i2

|L|2
) ∀i = 1, . . . , |L|. (8)

The expected value E[X ] is then given by:

E[X ] =
|L|/2

∑
i=1

i ·
i

∏
j=1

(1− 2( j−1)
|L|

)2(
4i
|L|
− 4i2

|L|2
) (9)

The most naive approach is to start from the beginning of the sequence and to pool as many oligos as possible
and continue in this manner. There obviously are more efficient approaches, but this is an upper bound for the
number of ligation reactions required to assemble a codeword. If m is the codeword length and n is the number of
nucleotides in an oligo, then the number of oligos per codeword is m/n. To obtain the number of pools required to
assemble the first , we can simple divide by the expected number of oligos per pool E[X ]. The number of first level
pooling reactions is, thus,

m/n
E[X ]

(10)

The resulting double stranded oligos need to further be ligated with each other on the second pooling level,
then the third etc. yielding a total number of

∑
i=1

m/n
E[X ]i

≤ m
n

1
1− 1

E[X ]

=
m
n

E[X ]

E[X ]−1
(11)

Following the reasoning above, there is a tradeoff between the size of the library and the number of ligation
steps required to assemble a codeword. In fact, the largest number of oligos that can be pooled in a single pool is
min(|L|, |R|). The objective of a pooling algorithm must be to identify subsets the oligos of a codeword, that do not
contain duplicate symbols. Since the symbols are drawn randomly, this will rarely be possible.
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6.3 Pooling Algorithm

Let L1,R1, . . . ,Lm/n,Rm/n denote the sequence of symbols of a codeword to be synthesised.

1. The initial pool consists of all oligos in the sequence. P0 := {L1,R1, . . . ,Lm/n,Rm/n}

2. For each symbol l ∈ L and r ∈ R, count the number of occurences of l and r in the first i symbols of the
codeword. This yields |L|+|R| different vectors of length m/2n.

E.g. if the symbol l1 occurs on the indices 4,5,7,11,12,14, then the vector cl1 will be

3. Select the symbol that has the closest two occurences of the same symbol and break the pool into two pools
at that particular position. In our example this would be at position 12.

4. Define new pools as P1 = {L1,R1,L11,R11} and P2 = {L12,R12, . . . ,Lm/n,Rm/n}.

5. Repeat steps 2-4 until every symbol only appears not more than once in any pool.

This algorithm will not yield the minimal number of pools, but can easily be improved by joining several pools
that do not contain duplicate symbols. Asymptotically, as the length of codewords increases, the expected number
of oligos per pool will increase to the number of different symbols in the library.

6.4 Binomial Encoding

Let us denote the cost of assembling a single oligo by c. If the cost of assembling k oligos is also c, then the
binomial encoding approach significantly reduces the costs per bit. If, however, the cost of assembling k oligos
is k · c, then the binomial encoding approach does not reduce the costs per bit, as can be seen in the right part of
Figure 12.

Message oligos, which encode the actual information have no motive restriction and are therefore depicted
empty. Positional oligos are depicted with a motive, which determines at what position the double standed oligo
is supposed to be ligated. This strategy enables both the parallel assembly of different variants of a codeword in a
single pool as well as the assembly of all positional oligos in parallel and, thus, reduces, the pooling levels to two.
Since our library consists of 16 left and 16 right motives, then a codeword can contain 32 different positions and
the assembly of a codeword only requires 33 pools. Note, that this approach also requires the use of a barcode for
every oligo in order to identify the strad variant. This slightly reduces the data density of the encoding scheme,
depending on the kind of barcode used.

In a real application, the optimal k will be determined by the copy numbers of the assembly process and can,
thus, be considered a given parameter for the problem of designing an optimal binomial encoding schema. However,
from the binomial function it is clear that the most information is encoded when k is ⌊n/2⌋. This is depicted on the
left side of Figure ??. The right side of the figure shows the diminishing return to the library size if k is fixed (at 5).
We must, thus, attempt to set k as close to ⌊n/2⌋ as possible.

In order to obtain unambiguous hybridisations is the specified pooling schema, there are two constraints that
need to be satisfied. Given a motive of A at position i in a codeword, the motive at position i+2 must not be A or
A’. If these two conditions are satisfied, parallel assembly of all variants of a block can be achieved.

Instead of constraining the sequence, however, we can also constrain the Sigma space. Consider a codeword
with motive A on position i, then the following oligo with motives X and Y can be selected, from 16 and 14 different
motives, effectively reducing the number of possible oligos from the library to 256 - 32 = 224.

6.5 Thermodynamic properties

However, the thermodynamic properties of the sequences that compose the motifs on a library are crucial for
unambigous hybridisation and ligation as well as avoiding secondary structures and binding issues in general.

There are many problems to be considered. For sequencing effectiveness, it is essential that
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There are essentially two requirements for an encoding scheme to satisfy the no-homopolymer condition.
Firstly, the library of oligos has to be constructed in such a way that every oligo in the library satisfies the no-
homopolymer condition. Second, the ligation of two oligos must not create homopolymers between oligos.

There are two ways to ensure the second condition. The first approach is to select a library of oligos in such a
way, that homopolymers can never occur, irrespective of the order in which the oligos are ligated. A straightfor-
ward approach would be to impose conditions of the first and the last nucleotide, e.g. (∀o ∈A : o1 ∈ {A,C}∧on ∈
{G,T}). Any series of oligos could then be concatenated to a no homopolymer DNA sequence. Furthermore, the
condition also imposes a condition on the n/2th and n/2+ 1th nucleotide of ligation oligos. By inverse comple-
mentarity, (∀o ∈A : ol/2 ∈ {G,T}∧ol/2+1 ∈ {A,C}). If ligation oligos also start with A or C, then the condition
also holds for coding oligos. If, however, ligation oligos start with G or T and end with A or C, the library would
be split into disjoint sets: (A = O ∪I , where O ∩I = /0).

The simulation created 25 libraries with n bases per oligo. These have oligos with around 50% CG-content
where the amount of variation of the CG-content is unique to every oligo length. Further, the oligos were picked
such that the intended hybridization has energies above the median of all possible binding energies for n/2 Watson-
Crick bindings.

The values analyzed here are the Medians of intended and unintended bindings x̄, the median absolute deviation
(MAD) MAD = median(|xi− x̄|), the range of ∆G values for both intended and unintended bindings max(A)−
min(A) where A is the set of intended or unintended bindings, the gap size |max(I)|−|min(U)| where I is the set of
intended bindings and U is the set of unintended bindings, and lastly the amount of unintended bindings with high
energy |{y|y ∈U,y > min(I)}|.

Many constrained encoding schemes are designed to have a balanced CG content. [23, 19, 29, 20, 31, 13, 22,
30, 3, 15, 8]. This condition is, however, only a simplification of the thermodynamic properties of DNA. More
general approaches require the Gibbs free energy of the oligos to be within a certain range....

6.6 Experimental Validation

6.6.1 Melting curve measurements: Materials and Methods

The library of 5’-phsophorylated 20-nt oligos has been ordered from IDT. Melting curve measurements have been
performed with the Roche Light Cycler® 480 II using 96 well semi-skirted plates (FrameStar, # 4TI-0952) and
adhesive seal (4titude, # 016540F). Each 20µL reaction contained 0,5µM of each two oligos, 1x EvaGreen® (#
31000), 1mM MgCl2 and nulease free water. Of all possible combinations to asses a RCP, only one was arbitrarily
chosen and reactions were prepared in duplictaes. The melting curve measurement was performed with an initial
heating step to 95 ◦C (ramp rate 4,4 ◦C/s; hold 5 sec), followed by cooling to 20 ◦C (ramp rate 2,2 ◦C/s, hold
1 min) and continous heating to 95 ◦C at a ramp rate of 0,11 ◦C/s and 5 acquisitions per ◦C. Tm calling was
performed with the Light Cycler® 480 software (v1.5.1) and the melting curves were analysed and plotted using
Microsoft® Excel (16.89.1). Melting temperatures of RCP were predicted using IDT’s OligoAnalyzer™ Tool using
the following parameters: Target Type (DNA), Oligo Conc (0.25; because if [strand 1] = [strand2], Oligo Conc
= ([strand1]+[strand2])/4, according to “melting temperature assumptions and limitations”)), Na+ Conc (0mM),
Mg++ (2,5mM), dNTPs Conc (0mM).

6.6.2 Ligation Experiments: Materials and Methods

Unless indicated otherwise all ligases are sourced from New England Biolabs. A 256-oligonucleotide library of
20-mers was sourced from IDT. The library was carefully designed based on the algorithm decribed in 6.1. Original
source library concentration comes at 100 µM in nuclease free water. Oligo library was then diluted at different
working concentrations of 10 µM, 1 µM and 0,1 µM with nuclease free water. Ligation reactions take place in 20
µl final volume and are prepared as following: 1 µl of each oligo is pipetted according to the computer-generated
pooling scheme in 2µl of 10X ligase buffer and nuclease free water. Finally, 1 µl of ligase is added to the mix.
The reaction occurs for 30 min at 25 °C. As negative control, ligation reaction was prepared the same way except
that oligonucleotides were replaced by nuclease free water.
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Analysis of ligation products with agarose gel electrophoresis was conducted using 2% Agarose (Avantor
VWR, USA) + 1X Tris-Acetate-EDTA buffer (Avantor VWR, USA) gel was prepared, and stained with SYBR
Safe (Thermo Fisher Scientific). For Gel loading, 8 µl of ligation product was mixed with 2 µl of Gel loading Dye,
Purple 6X (New England Biolabs) and 2 µl of nuclease free water. Ladders used in this work are sourced from
Invitrogen (Thermo Fisher Scientific). Gel was migrated at 90 V for 2h. Pictures of the gels were taken with a
FastGene FAS-X (Nippon genetics, Germany) imager system.

The analysis of the ligation products were performed on a 5300 fragment analyser (Agilent) with a 1 - 6000
pb DNF-974-33 kit. In capillary electrophoresis parameters: Sample was first injected at 5.0 kV for 30 s and
separation occurred at 6.0 kV for 50 min. Electropherograms obtained were analysed with PROSize 3.0 software.

As a first proof of concept, we tested whether ligation could occur in free solution without any surface attach-
ment (e.g. magnetic beads or glass surface) (Pengpumkiat et al, 2016; Barisic et al, 2015). For this, a pool forming
a fragment longer than 50 base pairs, containing unique motives was selected from the pipetting scheme. This pool
(poolA10) consists of 8 oligonucleotides and is expected to form an 80-bp fragment upon correct annealing and
ligation reaction. Ligation reaction was prepared as mentioned in Supplementary Material 6.6 with T4 DNA ligase
(20 U/µl final). In these conditions a band at approximately 80 pb (expected size of pool A10) was observed on
Agarose + 1X TAE gel (Fig. 2). No bands were observed in control conditions (not shown here) where oligos are
pooled together without adjunction of Ligase nor in conditions of ligase alone. Additionally not differences were
observed when oligos are pooled together in nuclease free water or in T4 ligase buffer.
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Figure 8: Ligation of fragment synthesized in pool A10.
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Figure 10: The distribution of the number of poolable oligos for |L|= |R|= 16 and M = L. The expected value is
2.41.

Figure 11: The expected pool size and and upper bound for the number of pools depending on the library size.

Figure 12: (Left)A comparison of the data encoded in a single position of a normal encoding scheme and a
binomial encoding scheme. (Right) The cost of encoding a single bit expressed as number of assembled oligos for
different assembly methods. For both illustrations, we fixed k = 5.
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Figure 13: An illustration of the binomial encoding schema, consisting of message oligos and positional oligos.

Figure 14: An illustration of the constraints on the motive sequence.
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